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Overview: The Three Pillars 
Our thesis is that leaders of Python development teams can dramatically increase speed, 
quality, and effectiveness of software development through a systematic process - as outlined in 
this book.  
 
This process is based on directing your team’s focus to the first principles of software 
engineering. When your team starts to operate in terms of these first principles, many positive 
compounding effects occur: 
 

●​ Code Quality: They start writing cleaner, more maintainable and agile code 
●​ Robustness: Avoiding more bugs, and more adroitly handling the rest 
●​ Velocity: Increased speed at which developers complete tasks and deliver features 
●​ Efficiency: How well developers use tools, resources, and time 
●​ Judgment: Making better decisions, especially in novel situations in which the “right” 

answer is not known 
●​ Problem-Solving: Improved ability to effectively tackle and resolve technical challenges 
●​ Innovation: Finding novel game-changing solutions that open new opportunities 
●​ Propagation: Spreading the knowledge and skills of top performers team-wide, even to 

new team members as staff changes over time 
●​ Morale: Lifting a positive team dynamic that enhances every other factor 
●​ Retention: "A" players want to stay for the long term 
●​ Recruitment: New "A" players are itching to get in 
●​ Presence: This strong performance is clearly evident outside the team, including to 

higher-level management 
 
We call this a “10X Team”. This is not the same as a 10X developer. An individual may indeed 
be a “rock star”. But their contribution is mild compared to a team operating at a high level 
together. 
 
It is important to understand this is not just about development velocity. It also affects capability. 
 

https://powerfulpython.com/teams/


In other words, when a team becomes a “10X Team”, they accomplish things they simply could 
not before. This qualitative difference in capability lifts morale and magnifies the team’s actual 
and perceived performance within the company’s larger mission. It even boosts retention and 
recruitment of exceptional talent - because A players want to work with other A players. 
 
Perhaps the best part is that this can be made to persist for the team as a whole, outlasting 
changes in staff over time. 
 
The difference between elite engineers and "normal" coders lies in the distinctions they make, 
the mental models they leverage, and their ability to perceive what others cannot. This can be 
trained in individuals, and that is where it starts. But the greater value comes from continually 
propagating these characteristics for the long term… to the point it becomes ingrained in the 
culture and “DNA” of the team itself. The result is that this higher level of effectiveness becomes 
not just a quality of the current team members, but an enduring trait of the engineering 
organization as a whole. 
 
There is a process by which technical teams can consistently achieve this, as detailed in this 
document. The high-level strategy is independent of programming language. But many technical 
details depend on the specific language and its ecosystem, so we will focus on Python. 
 
My name is Aaron Maxwell. I am a software engineer and author. I have worked in several 
Silicon Valley engineering teams, including two Unicorns (startups reaching $1 billion valuation), 
SnapLogic and Lyft. 

 
 
After working full-time as an engineer for a decade, I partnered with O’Reilly Media to create an 
extensive advanced Python curriculum. This was designed for working technology 
professionals… not for people new to coding, or new to Python. Over the course of 2 years, I 
taught this curriculum in repeated live sessions to over 10,000 professionals worldwide - in 
almost every engineering domain, country and culture. I also wrote a book, published with 
O’Reilly. 
 
While I am proud of the Powerful Python book, it is written from the perspective of the individual 
contributor who wants to learn how to write better Python code faster. The book you are reading 
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now has a different focus: how you, as an engineering leader, can navigating all the conflicting 
requirements and pressures to boost the performance of your team as a whole, in a lasting and 
effective way. 
 
What does it take to “10X” your team, in the sense we are talking about? There are three broad 
pillars: 
 

●​ The Engineering Foundation is the most technical. It deals with the first principles of 
effective software engineering and development. While the core concepts apply to every 
domain of technology, many of the details depend on the programming language and 
ecosystem. So we focus on Python in particular. 

●​ The next pillar is Thought Leadership. Meaning the non-technical “soft” skill stack of 
professional communication, that enables each member of your team, at every level, to 
lead each other to their highest level of collective excellence. This is the pillar that allows 
the “10X” to automatically propagate to future team members. 

●​ The final pillar is AI Acceleration. This means using AI code generation tools to amplify 
the effectiveness of your team, and of each team member, for creating quality production 
software. People have different beliefs on how important this will be. My view is that 
nondeterministic LLM-based generative AI will not be able to replace engineers in any 
meaningful sense. But it can improve the productivity, speed, and effectiveness of those 
with a solid engineering foundation. 

 
These enhance each other synergistically. 

Core Distinctions 

The Team Learning Process 
The transformation of your team requires efficiency of learning. This is not optional; members of 
your team must ramp up their knowledge and capabilities substantially, and do so with a few 
hours per week of focused attention. After all, you need them to be working most of the time; the 
engineering pipeline cannot stop for weeks or months while your people skill up. 
 
With that in mind, here is the high level process: 
 

●​ Focus on first principles. This produces the greatest boost to useful abilities from the 
lowest investment of deep-learning time. 

●​ Choose learning topics in “pareto-optimal” order (explained below). 
●​ As this foundation is established, actively apply what is learned in ongoing development 

work. 
●​ Do all this in a group of ambitious peers, for accountability and better learning. This is 

why it is valuable for all team members to be training concurrently, when possible. 



●​ Institute practices by which knowledge, skills and capabilities are continually transferred 
and reinforced between  team members, including new staff as they come in. 

 
This diagram illustrates the important building blocks, and how they relate to each other. The 
rest of this book explains what each element represents, and how they relate. 
 

 



First Principles 
Every domain of human activity has its own first principles. These are the foundational 
concepts, distinctions, ideas, and mental models upon which that domain is based, and which 
generate all value, results and new innovations. Distinguish between: 
 

●​ Language-independent first principles of software development 
●​ First principles of the programming language being used 

 
The Strategy Pattern is a first principle of software development. A first principle of Python is the 
function object abstraction, which you can use to easily implement Strategy - as demonstrated 
by key functions for Python’s sorted() built-in: 
 
>>> numbers = [7, -2, 3, 12, -5] 
 
>>> # Sort the numbers. 
>>> sorted(numbers) 
[-5, -2, 3, 7, 12] 
 
>>> # Sort them by absolute value. 
>>> sorted(numbers, key=abs) 
[-2, 3, -5, 7, 12] 
 
Other examples of first principles of software engineering include: 
 

●​ Design patterns 
●​ Mental models like complexity analysis (big-O notation)  
●​ Best practice guidelines such as the SOLID principles 

 
There are other first principles of software engineering which do not have standard 
names and which are not well known, except among the most exceptional performers 
and thought leaders. 
 
When you learn how to think in terms of first principles, and gain knowledge of the first 
principles of a particular domain, you are suddenly capable of great achievements in that 
domain. You get creative insights quickly and repeatedly, routinely solve seemingly intractable 
problems, and regularly produce surprising new inventions. 
 
Imagine what effect this will have on the members of your team, and the synergistic impact of 
how they work together. 
 
Let me make a bold assertion: All innovation comes from combining first principles. Specifically, 
from combining first principles in novel ways; from discovering new first principles; or both. 

https://en.wikipedia.org/wiki/Strategy_pattern


There may be some exceptions to this claim. But if you come up with some examples of what 
you consider to be genuine innovation, you will probably find this assertion generally fits. 
 
For software development in particular, mastery of first principles produces a quantum leap 
difference in development velocity, code quality, and successfully fulfilling business 
requirements. 
 
When you learn how to reason and operate from first principles, and apply that to a domain, you 
become a creative genius in that domain. Your abilities are recognized as rare and valuable. 
Your level of mastery allows you to contribute more than anyone else on the team. This applies 
on the individual-contributor level, and even more powerfully on the team level. 

Cognitive Psychology 
Cognitive Psychology is the area of psychology concerned with internal mental processes of the 
human mind. This includes perception; attention; internal representations of information forms, 
including representations of logical abstractions; and manipulation of those representations to 
produce conclusions and make decisions - a process we call 'thought'.

 
 
Cognitive psychology has important clinical applications. But our focus here is improving 
performance of information technology professionals. This touches almost every aspect of the 
craft of software construction, from the acquisition and application of “hard” technical skills, to 
the “soft” skills of inter-personal communication. 
 
Facets include: 
 

●​ Internal conscious representations of data structures and other logical forms, mainly 
relying on the visual modality (i.e. what you see in your mind’s eye) 

●​ Specific ‘algorithms’ for manipulation of visualized symbols, to improve rapid complex 
logical reasoning capability 

●​ Internal representations of abstractions, and techniques for operating on them to 
establish new insights and connections 



●​ The cognitive operation of ‘chunking’ 
●​ Improving cognitive efficiency, efficacy and correctness 
●​ Designing new and empowering mental models which grant you differential advantage 
●​ Understanding the distinction between symbols (e.g. words) and referents (what the 

words refer to) 
 
Leveraging these gives you a key advantage as a technology professional. In the same way you 
can take a bloated and barely-functioning algorithm, and refactor it to be faster, clearer, more 
robust and more efficient, you can learn to audit and even design your cognitive processes to 
make you exponentially better at solving engineering problems and writing code. 
 
The results can be profound. Simply put, learning cognitive psychology lets technology 
professionals perform better and innovate faster. 
 
The tools of cognitive psychology also allow you to communicate in more efficient and 
transformative ways. This includes normal conversations, but also in your writing; your public 
speaking; and any other form of one-to-one or one-to-many communication. People get massive 
insights consuming your content that they simply do not  get from similar content from others. 
They may not know why, but you will. 
 
This is because your effectiveness as a thought leader depends not just on your technical 
expertise, but on your ability to understand how human minds work. When you can empathically 
communicate both individually and through mass channels; pace their current understanding 
and context; then lead them to more empowered and effective viewpoints, techniques, and 
mental models, people are genuinely transformed by your communication. They recognize that, 
value it highly, and naturally hold you in higher esteem as a result. 
 
This is why an early focus on cognitive psychology is so powerful. You first leverage it to 
develop greater technical skills faster, and elevate your full understanding of your technology 
domain. And then, as you start to engage your wider professional audience through writing and 
speaking, you find your prowess in communication standing out even among other thought 
leaders. 

Pareto-Optimal Skill Acquisition 
Because I have trained thousands and thousands of technology professionals, I have thought 
deeply about the process of learning, and how to accelerate it. Especially when the people 
learning are smart and dedicated professionals (i.e. your team), and the topic is difficult (e.g. 
advanced Python software engineering). That is quite different from a beginner learning to write 
helloworld.py. 
 
An important framework for this is what I call Pareto-Optimal Learning Theory, or POLT for 
short. This is loosely based on a concept from economics, called “pareto optimality” - hence the 
name. 

http://helloworld.py


 
The details are almost mathematical, but the core idea is simple:  
 

When a high performer learns a complex skill, the process will go faster and easier when 
they learn steps in a certain optimal order. Go out of that order, and they can certainly 
still master that complex skill. But it may take much longer, and become harder to fully 
master. 

 
When I say “faster”, I do not mean like 10% faster. I mean exponentially faster. This is especially 
important for busy teams who are trying to get work done, and are not able to take ample time 
off for long and drawn-out training. 

Technical Foundation 

The Foundation Is Advanced OOP 
Most people know that object-oriented programming helps organize code. Fewer understand it 
organizes how you think about code, too. 
 
This has roots in cognitive psychology. Like all humans, your reasoning is denominated in the 
abstractions you create. This means you can improve the results of your reasoning by using 
better abstractions. 
 
This is related to the well-known “7 plus or minus 2" rule, created by Harvard psychologist 
George A. Miller. Dr. Miller's publication on this concept has become one of the most highly 
cited papers in the history of psychology. Briefly, human minds optimally reason in terms of a 
small number of chunks (yes, “chunk" is the formal term used in cognitive psychology). That 
number is close to 7 in most people, hence the name of the rule. 
 
The obvious way this applies to programming: if you have a small set of classes which map well 
to the business logic of what your program is attempting to do, it becomes exponentially easier 
to reason about your codebase and accomplish what is needed. 
 
That is because classes represent abstractions we can reason about. When you choose the 
right abstractions, and design classes which represent those abstractions well, your thinking is 
denominated in the most empowering mental model for solving the problem at hand. You find 
you can write high quality software faster, and with a greater chance of successfully solving the 
problem you want to solve. Your code seems more elegant and clear; it omits anything not 
necessary, uncluttered with cruft. 
 
A good example is the DataFrame class from Pandas. It is an abstraction, and a Python class, 
which has changed the world. But it is made up; once upon a time, there was no such thing as a 
dataframe. Someone created it, empowering countless coders to perform remarkable feats of 
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data processing with far less effort than before. Similar comments apply to any other widely 
used class. This means you can create your own abstractions (classes) that unlock massive 
productivity for you, your team, and possibly the world. 
 
As a simpler example, imagine a class called DateInterval, which represents an interval or range 
of days. It has a start date and an end date, and allows you to succinctly express operations on 
that interval. You set it up like this: 
 
>>> from datetime import date 
>>> interval = DateInterval(date(2050, 1, 1), date(2059, 12, 31)) 
 
You can check whether a particular day is in the interval or not:  
 
>>> some_day = date(2050, 5, 3) 
>>> another_day = date(2060, 1, 1) 
>>> some_day in interval 
True 
>>> another_day in interval 
False 
 
You can ask how many days are in the interval: 
 
>>> len(interval) 
3652 
 
You can even use it in a for-loop: 
 
>>> for day in interval: 
...     process_day(day) 
 
The DateInterval class is the Python-code manifestation of an idea, which you are now thinking 
in terms of as you write code using instances of this class. Here is the source code of 
DateInterval: 
 
from datetime import ( 
    date, 
    MINYEAR, 
    MAXYEAR, 
    timedelta, 
    ) 



 
class DateInterval: 
    BEGINNING_OF_TIME = date(MINYEAR, 1, 1) 
    END_OF_TIME = date(MAXYEAR, 12, 31) 
     
    def __init__(self, start=None, end=None): 
        if start is None: 
            start = self.BEGINNING_OF_TIME 
        if end is None: 
            end = self.END_OF_TIME 
        if start > end: 
            raise ValueError( 
                f"Start {start} must not be after end {end}") 
        self.start = start 
        self.end = end 
 
    @classmethod 
    def all(cls): 
        return cls(cls.BEGINNING_OF_TIME, cls.END_OF_TIME) 
 
    def __contains__(self, when): 
        return self.start <= when <= self.end 
     
    def __iter__(self): 
        for offset in range(len(self)): 
            yield self.start + timedelta(days=offset) 
 
    def __len__(self): 
        return 1 + (self.end - self.start).days 
 
Whether you currently understand this Python code is not important. What matters is you 
understand that you are creating a new abstraction, called a date interval, that empowers you to 
more efficiently reason about your codebase. And of course, it also makes it easier to write good 
code, and to write it faster. 
 
Classes are also important for more classically understood benefits like code reuse, 
encapsulation, data hiding, etc. But even these factors relate to how we think about our code. 



Automated Testing 
If OOP is the foundation, writing tests is the supercharger. When you apply the patterns and 
best practices of writing unit tests, integration tests, and other test forms, you find it 
tremendously boosts your capability to create sophisticated, powerful software systems. 
 
Automated testing does not help much when writing small scripts. But there is little value in that 
anyway. Your greatest contributions come from creating complex software systems that solve 
hard problems people care about. This is where automated testing becomes a superpower. 
 
In particular, automated testing will tremendously speed up development. Again, not for small 
programs; but that is not why you are here. Automated tests enable you to successfully create 
advanced software systems you simply could not before. 
 
The full power of automated testing depends on OOP. You can create simple tests without 
classes. But the most valuable testing patterns require full use of Python’s object system. This is 
why OOP comes first in pareto-optimal learning. 
 
One reason automated testing is so valuable: it effectively reduces the complexity of the 
program you are implementing. This makes it easier to implement mid-sized programs, but the 
real value is to enable you to create extremely complex software that would otherwise be out of 
reach. It raises the ceiling of complexity you can successfully handle, and it does so by a lot. 
 
Imagine you are designing a web application framework. You want view objects which represent 
the HTTP response, and a way to map incoming URLs to those views. You create specialized 
View classes for different response types, and create a class called WebApp to coordinate this 
configuration: 
 
app = WebApp() 
app.add_route("/api", JSONView({"answer": 42})) 
app.add_route("/about", HTMLView('about.html')) 
 
This object has a get() method to retrieve the HTTP response for a URL: 
 
>>> app.get('/api') 
‘{"answer": 42}’ 
>>> app.get('/about') 
‘<html><body>About Page</body></html>’ 
 
There is enough complexity here that if you just start coding it, odds are high bugs will be 
missed by manual testing. Even worse, at this threshold of complexity, every new feature you 
add risks breaking something in an unexpected way. The only way to maintain full correctness is 



to exhaustively test after each change, which if done manually becomes extremely 
labor-intensive. 
 
The solution is to start by writing a suite of automated tests, exercising the key functionality. Like 
this: 
 
import unittest 
from webapp import ( 
    WebApp, 
    HTMLView, 
    JSONView, 
    ) 
 
class TestWebapp(unittest.TestCase): 
    def test_route(self): 
        app = WebApp() 
        json_view = JSONView({"alpha": 42, "beta": 10}) 
        html_view = HTMLView('about.html') 
        app.add_route('/api', json_view) 
        app.add_route('/about', html_view) 
 
        # The JSON object as a string 
        expected = '{"alpha": 42, "beta": 10}' 
        actual = app.get('/api') 
        self.assertEqual(expected, actual) 
 
        # The contents of about.html 
        expected = '<html><body>About Page</body></html>\n' 
        actual = app.get('/about') 
        self.assertEqual(expected, actual) 
 
Then it becomes straightforward to implement. You simply write code to make your tests pass. 
And when that is done, you feel full confidence that your program is working correctly. Here is 
one way to implement it (and make the above tests pass): 
 
import abc 
import json 
 
class WebApp: 
    def __init__(self): 



        self._routes = {} 
    def add_route(self, url, view): 
        self._routes[url] = view 
    def get(self, url): 
        view = self._routes[url] 
        return view.render() 
    def urls(self): 
        return sorted(self._routes.keys()) 
 
class View(metaclass=abc.ABCMeta): 
    @abc.abstractmethod 
    def render(self): 
        pass 
 
class HTMLView(View): 
    def __init__(self, html_file): 
        with open(html_file) as filename: 
            self.content = filename.read() 
 
    def render(self): 
        return self.content 
     
class JSONView(View): 
    def __init__(self, obj): 
        self.obj = obj 
 
    def render(self): 
        return json.dumps(self.obj) 
 
The details of this are less important than understanding the pattern, which is: 
 

●​ Fully specify the desired behavior of the complex system, by writing automated tests 
●​ Rely on those tests to provide thorough feedback as you implement functionality 
●​ Run these tests frequently during development, as it costs you no effort to do so, and 

immediately exposes bugs and holes in functionality 
●​ Benefit from the test suite as you refactor the codebase, add significant new features, 

and otherwise make disruptive changes which threaten to break your program in 
unexpected ways 

●​ In the end, you have created a rich and powerful program, with low stress, high 
confidence in its continued correctness, and little effort spent on tedious manual testing 



 
This is why we say automated testing is a superpower. It simply puts you in a different tier. 

Data Scalability 
When processing large amounts of data, some programs are responsive, efficient, and 
rock-solid reliable. Others hog the machine’s resources, randomly hang without warning, or 
even crash when you push too much data into them. 
 
The difference comes down to space complexity. This is the area of algorithm analysis focused 
on effective usage of memory by programs. When designing an algorithm to process a large 
quantity of data, how can you make it use as little memory as possible, with a reasonable 
upper-bound that is independent of input size? 
 
This matters because of how operating systems manage running programs. When a program 
creates a large data structure, it must request a block of virtual memory from the OS. But the job 
of the OS is to allow all programs to run, and prevent any one program from starving the others 
of enough resources to run. So the OS does not always give a program the full amount of 
memory it asks for. If a program asks for too much, the OS will instead “page to disk” - which 
means giving the program a block of pseudo-memory, written to and read from the persistent 
storage layer (the hard disk, SSD, etc.) instead of actual memory.  
 
This shoves your performance off a cliff. The sluggish I/O speeds of disk compared to memory 
reduce raw performance tremendously, typically between 75% and 90%. It can literally make 
your program 10 times slower. If a human is interacting with your program directly, they will 
experience it to ‘hang’ and appear stuck. In extreme cases, to ensure other programs have the 
resources they need, the operating system will kill your process completely. 
 
Those skilled at writing big-data programs learn to code in memory-efficient ways, fitting in some 
reasonable memory footprint regardless of total data input size. This is an essential skill for top 
performers. Big data is here to stay, for everyone; software processing more data than fits into 
memory is increasingly the norm, not the exception. 
 
How do you accomplish this in Python? The key is a feature called generators. Many Python 
users have heard of this; you have probably seen the ‘yield’ keyword. But most do not know its 
depth, including: 
 

●​ The coroutine model of generator functions, and its implications for algorithm design 
●​ Generator design patterns, like fanning record streams in and out 
●​ The Scalable Composability strategy for implementing robust, flexible internal data 

processing pipelines 
 
This relates to first principles: of memory-efficient algorithms, which are independent of 
language; and of Python’s memory model, along with its generator feature. The language-level 



first principles form a bridge to the higher-level, language-independent first principles in Python 
programs. You need both. 
 
Consider this Python function: 
 
# Read lines from a text file, choosing 
# those which contain a certain substring. 
# Returns a list of strings (the matching lines). 
 
def matching_lines_from_file(path, pattern): 
    matching_lines = [] 
    with open(path) as handle: 
        for line in handle: 
            if pattern in line: 
                matching_lines.append(line.rstrip('\n')) 
    return matching_lines 
 
This returns a list of strings. It creates a new data structure - the list - whose size scales up in 
direct proportion to the size of the input. If the text file is small, or few lines in the file match the 
pattern, this list will be small. But if the text file is large, with many matching lines, the memory 
allocated for the list may become substantial. It can easily cross the threshold where the 
process must page to disk, plummeting performance of the entire program. 
 
Here is another approach: 
 
# Generator function 
def matching_lines_from_file(path, pattern): 
    with open(path) as handle: 
        for line in handle: 
            if pattern in line: 
                yield line.rstrip('\n') 
 
This is called a generator function, signaled by the ‘yield’ in its final line. Without going into 
details here, what this accomplishes is to transform the algorithm completely. Rather than a list 
of all matching lines, it is now producing matching lines one at a time. Typically you are using 
the result in a “for” loop or something similar, where you only process one at a time anyway. 
This means your memory footprint is now the size of the longest line in the file, rather than the 
total size of all matching lines. This holds true no matter how large of an input file you feed it. 
Suddenly your algorithm is exponentially more memory efficient, with none of the problems 
plaguing the first version. 
 



The best approach is to proactively infuse all your Python code with memory-efficient Python 
generator functions, as a standard practice when developing. This naturally makes your 
programs perform their best, regardless of hidden memory bottlenecks you missed, and 
regardless of unexpectedly large input sizes. 

Metaprogramming 
Most Python code operates on data. You can also write Python code that operates on other 
Python code. This is called “metaprogramming”, and is one of highest-leverage things you can 
do when creating software. 
 
Coders who use metaprogramming rapidly create tools and components that other developers 
could not create in a lifetime. It like the difference between riding a tricycle, and flying a jet. You 
not only “travel” faster; you go places you simply could not reach at all with the lessor vehicle. 
 
You can find examples of metaprogramming in the source code of the most successful Python 
libraries: Django, Pandas, Flask, Twisted, Pytest, and more. It is no mistake that extremely 
powerful tools rely on metaprogramming. 
 
As an example, imagine this function which makes an HTTP request to an API endpoint: 
 
import requests 
def get_items(): 
    return requests.get(API_URL + '/items') 
 
Suppose the remote API has an intermittent bug, so that 1% of requests fail with an HTTP 500 
error (which indicates an uncaught exception or similar error on the remote server). You realize 
that if you make the same request again, it has a 99% chance of succeeding. So you modify 
your get_items() function to retry up to 3 times: 
 
def get_items(): 
    MAX_TRIES = 3 
    for _ in range(MAX_TRIES): 
        resp = requests.get(API_URL + '/items') 
        if resp.status_code != 500: 
            break 
    return resp 
 
However, your application does not have just this one function. It has many functions and 
methods which make requests to different endpoints of this API, all of which have the same 
problem. How can you capture the retry pattern in an easily reusable way? 
 



The best way to do this in Python is with a metaprogramming tool called a decorator. The code 
for it looks like this: 
 
def retry(func): 
    def wrapper(*args, **kwargs): 
        MAX_TRIES = 3 
        for _ in range(MAX_TRIES): 
            resp = func(*args, **kwargs) 
            if resp.status_code != 500: 
                break 
        return resp 
    return wrapper 
 
Then you can trivially apply it to the first function, and other functions like it, by simply typing 
@retry on the line before: 
 
@retry 
def get_items(): 
    return requests.get(API_URL + “/items/”) 
 
@retry 
def get_item_detail(id): 
    return requests.get(API_URL + f”/item-detail/{id}/”) 
 
Even better, the retry logic is fully encapsulated in the retry() function. You can raise the number 
of maximum retries, implement exponential backoff, or make any other changes you want in one 
place. All decorated functions and methods immediately reflect your updates. 
 
Crucially, metaprogramming often allows you to implement solutions to complex and difficult 
problems in a way that people can easily reuse. This retry() function - and the @retry decorator 
it implements - is somewhat advanced code. But your @retry tool is instantly usable by 
everyone on your team. Your presence on the team has amplified everyone’s productivity and 
systematically improved the reliability of the entire application, in a way that everyone 
recognizes right away. 

Thought Leadership 
Cultivating internal thought leadership may be the most important thing you can do for the 
long-term success of your team. It boosts the knowledge and mastery of everyone on your 
team, helps spread the qualities of your best contributors to everyone, and creates a culture of 
engineering excellence which outlasts the tenure of any current team member. 



 
That last part is may be the most important. As a leader, you invest a lot of time, energy and 
budget into building a great team right now. But as the months and years pass, it is inevitable 
that its staff will change. People will leave for other opportunities, be let go, or get promoted out 
of your team; new folks will come in, for all sorts of reason. Since we know this will happen, it 
makes sense to plan for it, and ask if what we can do to ensure we keep great people as long 
as we can, and attract even better people in the future. 
 
That is where “thought leadership” comes in. By this, I mean a very specific skill stack. One 
which is entirely non-technical, and focused on the “soft” skills of professional communication, 

Content Creation 
 
Writing is the foundational skill of thought leadership. Everything else builds on it. 
 
Training your team members in simple writing skills is easy to do. It pays great dividends for 
them in their professional (and even personal) development. It is even more rewarding for you 
as team leader. It immediately starts improving quality of work team-wide, and rapidly elevates 
the knowledge and wisdom of the team as a whole. 
 
This operates at several levels. The most basic is that when we put our thoughts into writing, 
that naturally creates more clarity and understanding in our minds. We realize new distinctions 
and insights. Many have observed this, and you probably understand this already based on your 
own experience.  
 
At the team level, writing helps propagates knowledge and culture. When top performers write, it 
can be consumed by more junior team members to elevate them faster and more completely. 
This is especially true as staff changes over time. When people leave the team, the knowledge 
in their head leave with them; everything they wrote stays. And when new people join the team, 
they can access years of wisdom by reading. 
 
As engineering teams increasingly use generative AI tools, writing becomes important in a new 
way. Those who know how to write well, with completeness, clarity and precision, are able to 
prompt LLM-based tools in more productive and powerful ways. This is certainly a separate 
ability from writing code; many excellent coders struggle to use AI tools well, after all. The 
disparity may in large part be due to natural-language writing skills. By learning to write well for 
their peers, your teammates may well become able to get more out of AI tooling as well. 
 
Another way AI relates: as your team is writing more, the collective volume of their output can 
become an input corpus that other AI tools can ingest. One limitation of current agentic coding 
tools is they are only looking at the codebase itself, and are ignorant of much important context 
that is only in the head of your team. The more they write, the more that critical context 



becomes stored in a form that can at least in principle be accessed and leveraged by current 
and future tools. 

Implementation Path 
If you want help doing everything described in this document for your own team, schedule a call 
with us here. 

https://powerfulpython.com/teams-apply/
https://powerfulpython.com/teams-apply/
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